0040-4039/0515-1905\$02.00/0

STEREOELECTRONIC CONTROL OF EXO/ENDO RATE RATIOS IN THE SOLVOLYSIS OF 2-NORBORNYL p-TOLUENESULFONATES

W. Fischer, C.A. Grob^{*}, G. von Sprecher & A. Waldner Institute of Organıc Chemistry, University of Basel, Switzerland.

Summary. The variable exo/endo rate ratios observed in the solvolysis of 6-exosubstituted exo- and endo-2-norbornyl p-toluenesulfonates are due to differential transmission of polar effects in the transition state for ionization.

The hydrolysis of the exo- and endo-2-norbornyl p-toluenesulfonates $\underline{1}a - \boldsymbol{\ell}$ and $\underline{2}a - \boldsymbol{\ell}$, respectively, in 70 % dioxane produced a similar series of unrearranged and rearranged substitution and elimination products, albeit in different yields ^{1,2} Hence, stereoisomeric ion pairs ³ are implicated as intermediates. In contrast, $\underline{1}$ and $\underline{2}$, m - r, underwent quantitative fragmentation and hydrolysis to (cyclopent-3en-1-yl)acetaldehyde 3 ^{1,2}.

The first order rate constants (k) for $\underline{1}$ and $\underline{2}$, a - r, vary over a range of ca. 10^6 and 10^3 , respectively (Table). Thus, 6-exo-substituents control the ionization rates far more strongly in the exo- than in the endo-series. Furthermore, log k for $\underline{1}$ and $\underline{2}$, a - h, correlate well with the corresponding inductive substituent constants $\sigma_{\underline{I}}^{q}$ for R, as derived from pK_a values of 4-substituted quinuclidinium perchlorates $\underline{4}^{-4}$ (Figure 1). As evidenced by the reaction constants $\underline{9}$ of -2.0 and -0.86, respectively, the inductive effect of R is transmitted more

TABLE

		k(s ⁻¹),	$k(s^{-1}), 70.0^{\circ}$		accelerations	
	R =	exo-series $\underline{1}$	endo-series $\underline{2}$	k (endo)	exo	endo
a)	Н	3.58×10^{-2}	8.42×10^{-5}	425		
b)	CH 3	1.09×10^{-2}	6.02 x 10 ⁻⁵	181		
c)	CH ₂ Br	1.06×10^{-4}	6.75 x 10 ⁻⁶	16		
d)	СООН	5.97 x 10 ⁻⁶	2.88 x 10 ⁻⁶	2		
e)	COOCH3	6.33 x 10 ⁻⁶	1.73×10^{-6}	3.7		
f)	ососн	8.14 x 10 ⁻⁷	1.21×10^{-6}	0.67		
g)	Br	1.51×10^{-7}	4.06×10^{-7}	0.37		
h)	CN	1.23×10^{-7}	1.40×10^{-7}	0.88		
i)	CH2NH2	8.84×10^{-3}	3.73 x 10 ⁻⁵	237	4	1.3
j)	сн ₂ он	5.97 x 10^{-3}	4.39×10^{-5}	136	5	2
k)	CONH ₂	7.56 x 10 ⁻⁵	7.12 x 10^{-6}	11	16	3.6
1)	coo	7.04×10^{-2}	1.16×10^{-4}	607	95	6.7
m)	NHCOCH 3	2.21×10^{-4}	1.07 x 10 ⁻⁵	21	22	4
n)	SCH3	3.34×10^{-4}	2.09×10^{-5}	16	39	8.3
0)	OCH ₃	2.88 x 10^{-4}	4.29×10^{-5}	7	84	25
p)	ОН	6.05×10^{-4}	1.00×10^{-4}	6	97	46
q)	NH ₂	2.25×10^{-2}	2.55×10^{-4}	88	160	30.5
r)	N(CH ₃) ₂	1.45×10^{-1}	6.25 x 10 ⁻⁵	2320	1253	8

effectively in the "staggered" conformation <u>5</u> than in the "skew" conformation <u>6</u> of the transition state. This also applies to electrofugal substituents ⁵, i.e. potential σ -electron donors, such as CH_2NH_2 , CH_2OH , $CONH_2$ and COO^- , or n-electron donors, such as $NHCOCH_3$, SCH_3 , OCH_3 , OH, NH_2 and $N(CH_3)_2$. In both cases the exo- and the endo-tosylates react faster than predicted from their σ_I^q values ⁶. Again, the accelerations are larger in the exo series (Table).

Differential transmission of polar effects is reflected in variable exo/endo rate ratios (Table) which decrease from a maximum of 2320 for $(CH_3)_2N$ to 0.37 for Br, i.e. as the net electron attraction by R increases.

These results preclude an explanation for high exo/endo rate ratios based solely on sterically hindered and thus retarded ionization of the endo isomers 2^{7} . Nor is it necessary to postulate different mechanisms for <u>la</u> and <u>2a</u>, i.e. one leading directly to a bridged or nonclassical ion 7^{8} , the other to a conventional carbocation <u>8</u>. In fact, a common mechanism is indicated for both series, since log k for <u>la</u> - <u>l</u> ℓ and for <u>2a</u> - <u>2</u> ℓ correlate well with one another (Figure 2)

Figure 2. Plot of log k for endo-tosylates 2 against log k for exo-tosylates $\underline{1}$.

Significantly, the correlation fails when fragmentation occurs as with $\underline{1}$ and $\underline{2}$, n - r.

The results suggest that the exo/endo rate ratio of 425 for <u>la</u> and <u>2a</u> is also stereoelectronically controlled. As illustrated in the Newman projections exo-<u>9</u> and endo-<u>10</u> the same ligands are attached to C(1) and C(2). However, they are differently aligned with respect to the C(2)-OTs bond. In exo-<u>9</u> the C(1)-C(6) bond is antiperiplanar. It therefore exerts a stronger inductomeric or CC-hyperconjugative ^{6,9} effect than the deflected C(1)-C(7) bond in endo-<u>10</u>, which therefore provides less stabilization in the transition state. Conversely, an electron withdrawing substituent at C(6) will destabilize the transition state for exo-<u>9</u> more than for endo-<u>10</u> and thus reduce or even reverse the exo/endo rate ratio.

REFERENCES

- 1) W. Fischer, C.A. Grob & G. von Sprecher, Tetrahedron Letters 1979, 473.
- W. Fischer, C.A. Grob, G. von Sprecher & A. Waldner, Tetrahedron Letters 1979, 1901.
- 3) K.B. Becker & C.A. Grob, Helv. chim. acta 56, 2723, 2733, 2747 (1973).
- 4) C.A. Grob & M.G. Schlageter, ibid. 59, 264 (1976).
- 5) C.A. Grob & P.W. Schiess, Angewandte Chemie, Intern. Ed. <u>6</u>, 1 (1967).
- 6) Such exalted substituent effects were recently attributed to inductomeric and CC-hyperconjugative effects; C.A. Grob, ibid. <u>15</u>, 569 (1976); W. Fischer & C.A. Grob, Helv. chim. acta 61, 1588 (1978).
- 7) H.C. Brown, "The Nonclassical Ion Problem", with comments by P. von R. Schleye: Plenum Press, New York 1977.
- 8) S. Winstein & D. Trifan, J. Amer. Chem. Soc. 74, 1147, 1154 (1952).
- 9) CC-Hyperconjugation or "vertical stabilization" have been proposed to explain the large exo/endo rate ratio: F.R. Jenson & B.E. Smart, J. Amer. Chem. Soc.
 91, 5688 (1969); T.G. Traylor, W. Hanstein, H.J. Berwin, N.A. Clinton & R.S. Brown, ibid. 93, 5715 (1971).

(Received in UK 20 February 1979)